正激电源--谐振去磁技术

创新之源 2016-12-02 20:20

往期经典: UC3843/42用于直流变换器拓扑控制总结(附带simplis闭环控制仿真 ) VICOR 500W超高功率密度高效率DC-DC电源模块评测 结合'...

往期经典:

UC3843/42用于直流变换器拓扑控制总结(附带simplis闭环控制仿真 )

VICOR 500W超高功率密度高效率DC-DC电源模块评测

结合电路系统讲解PCB设计与EMC整改

开关电源原边反馈技术

VICOR全新ChiP DCM

不可多得的电源设计心得!

EMI整改经验(以实测波形对比讲解)

Simplis (Simetrix) 仿真应用

拆解一款诺基亚室外通讯备用电源中的充电器

MOSFET开通过程分析---米勒平台的形成过程

一 概述

单端正激型开关电源只使用一支功率开关管,整体电路结构比较简单,在中小功率输出的场合得到了广泛的应用。但这种拓扑结构形式的特点是功率变压器工作于B-H曲线的第一象限,变压器存在磁心饱和的潜在隐患,必须采用适当的去磁方法,将功率变压器在开关导通时存储的磁化能量在截止期间泻放或者消耗掉。否则,经过多个开关周期后,由于剩磁作用,变压器的工作点逐渐上移,极易由于磁心饱和而产生近似短路状态,导致功率开关管上流过较大的电流,超过其额定值而烧毁。

工程中常用的经典去磁方法包括增加去磁绕组、有源嵌位、R-C-D嵌位法、ZVT嵌位法等,其共同思路是:在主功率开关截止后,通过一定的途径,使变压器中剩余的磁化能量进行泻放或者消耗在无源功率电阻上。

实际上,由于目前的开关电源普遍采用MOSFET作为功率开关,因此仅利用其分布参数也能够较好的完成去磁工作,即采用谐振技术进行去磁。谐振去磁的基本原理为:在功率开关截止后,利用变压器的自感和电路中元器件的分布电容进行谐振,将变压器的磁化能量进行转移。这样,省去了相对复杂的去磁设计,使得电路结构得到简化。

二 谐振去磁的工作原理

在分析利用谐振技术进行变压器去磁的工作原理之前,首先作出以下假设:

(1)整个系统处于动态平衡的稳定状态。

(2)输出电感LO与输出电容CO与参与谐振的分布元件相比,近似为无穷大。

(3)变压器的漏感可以忽略不计。

(4)开关管与二极管均为理想器件,即开关管导通电阻和二极管的正向压降均可以近似认为是0。

(5)与开关周期和谐振工作时间相比,开关器件的过渡时间很短。

对于一个单端正激型电源,与该谐振去磁方法相关的基本电路元件分布位置如图1所示:

其中,Lm为变压器初级线圈的等效电感;Ct为功率变压器初级绕组的等效电容,与Lm为并联关系;Cs为开关管Q1的漏-源极结电容和为改善其开关环境而并联的外电容之和;C1为输出整流二极管的结电容。

图2为这些元器件等效到变压器初级的示意图。由图中可以看到,Dr的结电容C1等效到变压器初级的电容C2为:

且它与Ct为并联关系。同时,假定输入电压源Vin为理想电压源,其内阻可以忽略不计,因此在交流谐振状态时,Cs也与Ct呈并联关系。

在一个完整的开关周期内,谐振去磁的整个工作过程由以下几个阶段组成:

第一阶段:图3中的T1阶段。在此之前, Q1处于截止状态,其漏-源极上的电压为输入电压Vin, Df续流导通,流过变压器磁心的磁化电流为负值I1(其大小与方向在后面进一步解释)。从t=0开始,Q1受控导通,主功率变压器磁心的磁化电流Imag为线性变化,由负值逐渐变为0,又开始正向增加。在这一阶段,由于极性关系,Dr导通,Df截止。而C1和Cs的端电压均近似为0,能量由输入端通过变压器耦合至输出负载。假定变压器初级磁化电流在该阶段开始时为I1,结束时为I2,则I1与I2的关系为:

第二阶段:图4中的T2阶段。在此阶段的开始,Q1受控制信号的作用截止,其漏-源极电压Vds开始迅速上升。当Vds超过输入电压Vin之后,变压器次级线圈的极性反转,Dr相应截止,Df导通。由于Q1的截止,变压器初级电感Lm与电路中的等效电容Cr(C2、Ct、Cs之和)形成一个并联谐振电路,开始谐振工作,去磁电流Imag开始以正弦形状变化并流过谐振电路。由电路理论可以得知,一个L-C并联电路以谐振方式工作时,电感上的电流与电容上的电压均为正弦形变化,且彼此相位相差90度,参与谐振的电感和电容所存储的能量互相交换。由于Cr在前一阶段的端电压为0,没有存储能量,而Lm中的能量在开关截止前达到了最大值,因此Lm与Cr产生能量交换;该阶段的持续时间为T2,且T2为一个完整谐振周期的一半。

Cr上的电压由0所能够达到的最大值为:

而Q1漏-源极电压Vds在Cr达到最大值时,也达到最大值:

这样,到了该阶段的末期,激磁电流Imag达到负向的最大值。由于系统处于稳定的动态平衡状态,且能够完全去磁,因此其值等于-I2。此时, Q1漏-源极电压Vds等于输入电压Vin。

这一阶段的等效电容Cr为:

谐振频率为:

由初始条件,可以得到磁化电流与等效电容电压的变化分别为:

在上述两个阶段,变压器中磁场强度H的变化与磁化电流Imag的变化相一致:当T1阶段,H向正方向增加;而在接下来的T2阶段,由于谐振作用,H向反方向变化。这样,通过谐振使变压器的激磁能量进行了转移,并且最终实现了磁化电流的反向流动,从而达到了去磁的目的。

第三阶段:图5中的T3阶段。在此时间段内, Q1仍然保持截止状态,由于前一阶段Cr上的电压谐振地变化为0,因此Q1两端的电压为Vin。当Cr上的电压企图继续谐振,进一步降低时,就导致Dr导通。因此,该时间段开始时,Np与Ns的端电压均为0,Cr的端电压被嵌位为0,谐振结束,此时与Q1并联的Cs两端没有变化的交流电压,只有稳定的直流电压Vin。Dr与Df均可以看作是处于“导通”状态。而负向的磁化电流由于只有Df-Dr-Ns这样一条通路可以继续流动,且磁化电流I1在这一阶段保持恒定的负值I1不变,这种工作模式一直持续到下一个开关周期的到来。在系统处于稳定工作状态时,且保证每个开关周期都能够完全进行去磁的条件下,磁化电流I1也等于下一个开关周期开始时的I1,即:

最新文章
猜你喜欢